Blood flow and metabolic regulation in seal muscle during apnea.
نویسندگان
چکیده
In order to examine myoglobin (Mb) function and metabolic responses of seal muscle during progressive ischemia and hypoxemia, Mb saturation and high-energy phosphate levels were monitored with NMR spectroscopy during sleep apnea in elephant seals (Mirounga angustirostris). Muscle blood flow (MBF) was measured with laser-Doppler flowmetry (LDF). During six, spontaneous, 8-12 min apneas of an unrestrained juvenile seal, apneic MBF decreased to 46+/-10% of the mean eupneic MBF. By the end of apnea, MBF reached 31+/-8% of the eupneic value. The t(1/2) for 90% decline in apneic MBF was 1.9+/-1.2 min. The initial post-apneic peak in MBF occurred within 0.20+/-0.04 min after the start of eupnea. NMR measurements revealed that Mb desaturated rapidly from its eupenic resting level to a lower steady state value within 4 min after the onset of apnea at rates between 1.7+/-1.0 and 3.8+/-1.5% min(-1), which corresponded to a muscle O(2) depletion rate of 1-2.3 ml O(2) kg(-1) min(-1). High-energy phosphate levels did not change with apnea. During the transition from apnea to eupnea, Mb resaturated to 95% of its resting level within the first minute. Despite the high Mb concentration in seal muscle, experiments detected Mb diffusing with a translational diffusion coefficient of 4.5 x 10(-7) cm(2) s(-1), consistent with the value observed in rat myocardium. Equipoise P(O(2)) analysis revealed that Mb is the predominant intracellular O(2) transporter in elephant seals during eupnea and apnea.
منابع مشابه
Detection of myoglobin desaturation in Mirounga angustirostris during apnea.
1H NMR solution-state study of elephant seal (Mirounga angustirostris) myoglobin (Mb) and hemoglobin (Hb) establishes the temperature-dependent chemical shifts of the proximal histidyl N(delta)H signal, which reflects the respective intracellular and vascular PO2 in vivo. Both proteins exist predominantly in one major isoform and do not exhibit any conformational heterogeneity. The Mb and Hb si...
متن کاملRole of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit
Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...
متن کاملRole of Local Nerves and Prostaglandins in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in the Rabbit
The mechanisms underlying cerebral vasodilatation during hypercapnia are not fully understood. To examine the role of nerves and prostaglandins in the regulation of basal blood flow and in hypercapnia-induced vasodilatation in the cerebral blood vessels of rabbit.Cerebral blood flow was measured by laser Doppler flow-meter in 18 NZW rabbits anesthetized with sodium pentobarbital. Tetrodetoxin ...
متن کاملEffect of blood flow restriction on metabolic rate and fat oxidation during and after high-intensity intermittent exercise in active male students
Background and Aims: Given the role of blood flow restriction in causing more hemodynamic stress, the aim of the present study was to investigate the effect of blood flow restriction on the metabolic rate and substrate oxidation during and after high-intensity intermittent exercise (HIIE) in male active students. Method: For this purpose, 10 male active students, selected and in a cross-over de...
متن کاملApnea stimulates the adaptive response to oxidative stress in elephant seal pups.
Extended breath-hold (apnea) bouts are routine during diving and sleeping in seals. These apneas result in oxygen store depletion and blood flow redistribution towards obligatory oxygen-dependent tissues, exposing seals to critical levels of ischemia and hypoxemia. The subsequent reperfusion/reoxygenation has the potential to increase oxidant production and thus oxidative stress. The contributi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 211 Pt 20 شماره
صفحات -
تاریخ انتشار 2008